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In this paper new symplectic-schemes for the numerical solution of the radial Shrödinger
equation are proposed. In particular, symplectic integrators for Hamiltonian systems have been
developed. Based on this approach, second- and third-order methods are proposed. These
methods are more accurate than the existing ones. We compare these methods not only with
the existing symplectic methods, but also with a classical Runge–Kutta–Nyström method.
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1. Introduction

The one-dimensional time-independent Schrödinger equation has the form

−1

2

d2q

dx2
+ V (x)q = Eq, (1)

whereE is the energy eigenvalue,V (x) is the potential andq is the wavefunction.
Many problems in molecular spectroscopy and quantum chemistry, theoretical

physics, materials science and computational mechanics can be expressed as systems
of equations of the form (1). Consequently there is a real need for reliable and efficient
solution of (1) using numerical methods.

Liu et al. [1] has transformed (1) into Hamiltonian canonical equation using Legen-
dre transformation. The Hamiltonian canonical equations are illustrated below:


ṗ = −∂H

∂q
= −B(x)q,

q̇ = ∂H
∂p
= p,

(2)

∗Corresponding author. Postal address: Amfithea-Paleon Faliron, 26 Menelaou Street, GR-175 64 Athens,
Greece. Active Member of the European Academy of Sciences and Arts.

83

0259-9791/03/0700-0083/0 2003 Plenum Publishing Corporation



84 K. Tselios and T.E. Simos / Symplectic methods for the numerical solution

whereB(x) = 2[E − V (x)] andH is the Hamiltonian function

H(q, p, x) = 1

2
p2+ 1

2
B(x)q2. (3)

The symplectic integration of Hamiltonian dynamical systems is a recent research
field. Third-order integrators were constructed by Ruth [2], fourth-order integrators were
obtained by Candy and Rozmus [3] and Forest and Ruth [4]. Yoshida [5] has constructed
symplectic integrators of sixth and eighth order.

In this paper new symplectic integrators of second and third order have been con-
structed. The new methods have been compared with well-known symplectic integrators
(see [2–5]).

2. Symplectic integrators – basic theory

The characterization of a canonical transformation is done by using matrix algebra
or by using differential forms (2-form).

Definition 1 [6]. A mapping is symplectic if

LT JL = J, (4)

whereL is the 2d-dimensional Jacobian matrix of the mapping and

J =
(

0d Id
−Id 0d

)
,

with Id and 0d denoting the unit and zerod-dimensional matrix.

Proposition 1 [6]. A transformation
(
q

p

)
→
(
q∗
p∗
)

is symplectic (2-form) if and only if∑d
i=1 dq∗i ∧ dp∗i =

∑d
i=1 dqi ∧ dpi , rewriting as dq∗ ∧ dp∗ = dq ∧ dp.

In this paper we will study symplectic integrators as proposed by Forest and
Ruth [4], Yoshida [5]:


Pi = Pi−1 − cihBn+1/2Qi−1,

i = 1, . . . , k,
Qi = Qi−1 + dihPi,

(5)

whereQ0 = qn, P0 = pn, Bn+1/2 = B(xn + h/2), ci anddi are free parameters andk is
the number of stages.

The solution at the pointxn+1 is given by:

Qk = qn+1, Pk = pn+1. (6)
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The parametersci anddi are determined by Yoshida [5]

exp
[
h(A+ B)] = k∏

i=1

exp(cihA)exp(dihB)+O
(
hn+1

)
, (7)

wherek andn are the number of stages and the order of method, respectively.

3. Construction of symplectic integrators

In order to determine the coefficientsci , di , we expand the left-hand side of (7) in
powers ofh,

S(h) = exp
[
h(A+ B)] = 1+ h(A+ B)+ 1

2
h2(A2+ AB + BA+ B2)+ · · · .

Expanding the right-hand side of (7)

S̃(h)=
k∏
i=1

exp(cihA)exp(dihB)

= 1+ h
(

k∑
i=1

ciA+
k∑
i=1

diB

)
+ 1

2
h2

[(
k∑
i=1

ci

)2

A2 + 2
k∑
i=1

di

i∑
j=1

cjAB

+ 2
k∑
i=1

di

k∑
j=i+1

cjBA+
(

k∑
i=1

di

)2

B

]
+ · · ·

we want the two expressions to agree up tohn. The resulting equations for the coeffi-
cientsci, di are:

Order 1.

A: D1,1 =
k∑
i=1

ci − 1,

B: D1,2 =
k∑
i=1

di − 1.

(8)

Order 2.

AB: D2,1 =
k∑
i=1

di

i∑
j=1

cj − 1

2
,

BA: D2,2 =
k−1∑
i=1

di

k∑
j=i+1

cj − 1

2
.

(9)
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Order 3.

A2B: D3,1 = 1

2

k∑
i=1

di

(
i∑
j=1

cj

)2

− 1

6
,

AB2: D3,2 = 1

2

k∑
i=1

ci

(
k∑
j=i
dj

)2

− 1

6
,

BA2: D3,3 = 1

2

k∑
i=1

di

(
k∑

j=i+1

cj

)2

− 1

6
,

B2A: D3,4 = 1

2

k∑
i=2

ci

(
i−1∑
j=1

dj

)2

− 1

6
,

ABA: D3,5 =
k∑
i=1

ci

k∑
j=1

dj

k∑
l=j+1

cl − 1

6
,

BAB: D3,6 =
k∑
i=2

di

i∑
j=2

cj

j−1∑
l=1

dl − 1

6
.

(10)

Order 4.

A3B: D4,1, AB3: D4,2, BA3: D4,3, B3A: D4,4,

A2B2: D4,5, B2A2: D4,6, A2BA: D4,7, AB2A: D4,8,

ABA2: D4,9, B2AB: D4,10. BA2B: D4,11, BAB2: D4,12,

ABAB: D4,13, BABA: D4,14,

(11)

The functions of order four are presented analytically in section 4.2. The equations
for higher orders can be found in a similar way.

The above equations are depended linearly. The transformation into a linearly
independent system of equations, leads to the following number of equations.

The number of order condition is

Order 1 2 3 4
Equations 2 3 5 8

therefore a second-order method needs at least two stages while a third-order method
needs at least three stages.
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4. Development of the new methods

4.1. The second-order method

We are going to construct the second-order method. From the previous discussions
this is going to be a two-stage method, of the form (5), i.e.,



P1 = pn − c1hB

(
xn + h

2

)
qn,

Q1 = qn + d1hP1,

pn+1 = P1− c2hB

(
xn + h2

)
Q1,

qn+1 = Q1+ d2hp
n+1.

Following approach described in section 3, equations (8), (9) are written as


c1 + c2 = 1,

d1 + d2 = 1,

c1d1+ (c1+ c2)d2 = 1

2
,

d1c2 = 1

2
.

(12a)

(12b)

(12c)

(12d)

For second-order equations 12(a)–(c) should be satisfied, while 12(d) follows from
the first three equations.

Yoshida [5] derived his second-order method by lettingd2 = 0, then

c1 = 1

2
, c2 = 1

2
, d1 = 1, d2 = 0. (13)

Since we have three equations, we letd1 be a free parameter, then

c1 = 1− 1

2d1
, c2 = 1

2d1
, d2 = 1− d1. (14)

We minimize the error-function and we find the coefficients. The error-function
is:

error(c1, c2, d1, d2) =
√
D2

3,1+D2
3,2+D2

3,3+D2
3,4+D2

3,5+D2
3,6, (15)

whereD3,1, . . . ,D3,6 for two-stage method are:

D3,1=−1

6
+ 1

2

(
c2

1d1 + (c1+ c2)
2d2
)
,
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D3,2=−1

6
+ 1

2

(
c2d

2
2 + (d1+ d2)

2c1
)
,

D3,3=−1

6
+ 1

2
c2

2d1,

D3,4=−1

6
+ 1

2
c2d

2
1,

D3,5=−1

6
+ c1c2d1,

D3,6=−1

6
+ c2d1d2.

From (14) the error-function becomes:

error(d1) =
√

6

12

√(−3+ 4d1

2d1

)2

+ (−2+ 3d1)2. (16)

Minimization of the error-function givesd1 =
√

2/2 (error(d1) = 0.0350), then

c1 = 1−
√

2

2
, c2 =

√
2

2
, d1 =

√
2

2
, d2 = 1−

√
2

2
. (17)

It is important to be noticed the symmetries,c1 = d2 andc2 = d1.

4.2. The third-order method

We are going to construct the third-order method. From the previous discussions
this is going to be a three-stage method, of the form (5), i.e.,




P1 = pn − c1hB

(
xn + h2

)
qn,

Q1 = qn + d1hP1,

P2 = P1− c2hB

(
xn + h2

)
Q1,

Q2 = Q1+ d2hP2,

pn+1 = P2− c3hB

(
xn + h2

)
Q2,

qn+1 = Q2+ d3hp
n+1.
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Following approach described in section 3, independent equations (8)–(10) are
written as: 



c1+ c2 + c3 = 1,

d1+ d2 + d3 = 1,

c1d1+ (c1 + c2)d2+ (c1+ c2 + c3)d3 = 1

2
,

c2c3d2+ c1
(
(c2+ c3)d1+ c3d2

) = 1

6
,

c2d1d2+ d3
(
(d1 + d2)c3+ c2d1

) = 1

6
.

(18a)

(18b)

(18c)

(18d)

(18e)

For third-order method equations 18(a)–(e) should be satisfied.
Ruth [2] derived his third-order method (error = 0.0495164), which is given

by:

c1 = 1, c2 = −2

3
, c3 = 2

3
, d1 = − 1

24
, d2 = 3

4
, d3 = 7

24
. (19)

Since we have five equations (and six parameters), we letd2 be a free parame-
ter. We minimize the error-function and we find the coefficients. The error-function
becomes:

error(c1, c2, c3, d1, d2, d3) =
√
D2

4,1+D2
4,2+ · · · +D2

4,14, (20)

whereD4,1,D4,2, . . . ,D4,14 for three-stage method are:

D4,1=− 1

24
+ 1

6

(
c3

1d1+ (c1+ c2)
3d2 + (c1+ c2+ c3)

3d3
)
,

D4,2=− 1

24
+ 1

6

(
c3d

3
3 + c2(d2 + d3)

3+ c1(d1+ d2 + d3)
3
)
,

D4,3=− 1

24
+ 1

6

(
(c2+ c3)

3d1+ c3
3d2
)
,

D4,4=− 1

24
+ 1

6

(
c2d

3
1 + c3(d1 + d2)

3
)
,

D4,5= 1

24

(−1+ 12c2c3d
2
3 + 6c2

3d
2
3 + 6c2

2(d2+ d3)
2+ 6c1(d1+ d2+ d3)

2
)

+ 1

2

(
c1c3d

2
3 + c2(d2 + d3)

2),
D4,6=− 1

24
+ 1

4

(
c2

2d
2
1 + 2c2c3d

2
1 + c2

3d
2
1 + 2c2

3d1d2+ c2
3d

2
2

)
,
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D4,7=− 1

24
+ 1

2
c1c2c3d2 + 1

2

(
c2

2c3d2+ c1
(
c2c3d2+ c1

(
(c2+ c3)d1+ c3d2

)))
,

D4,8=− 1

24
+ 1

2
c1c3d1d2 + 1

2

(
c2c3d

2
2 + c1

(
c3d

2
2 + d1

(
(c2+ c3)d1+ c3d2

)))
,

D4,9=− 1

24
+ 1

2

(
c2c

2
3d2+ c1

(
(c2+ c3)

2d1+ c2
3d2
))
,

D4,10=− 1

24
+ 1

2

(
c2d

2
1d2+

(
c2d

2
1 + c3(d1 + d2)

2
)
d3
)
,

D4,11=− 1

24
+ 1

2
c2c3d1d3 + 1

2

(
c2

3d2d3+ d1
(
c2

3d3 + c2
(
c3d3 + c2(d2+ d3)

)))
,

D4,12=− 1

24
+ 1

2

(
c3d2d

2
3 + d1

(
c3d

2
3 + c2

(
d2 + d3

)2))
,

D4,13=− 1

24
+ c2c3d2d3+ c1

(
c3d2d3 + d1

(
c3d3+ c2

(
d2+ d3

)))
,

D4,14=− 1

24
+ c2c3d1d2.

Minimization of the error function gives

d2 = − 58623767696137
811561628596785 or d2 = 5200281507982433

4399167664813427 (error(d2) = 0.0374228),

then

c1 = 479561939695517
1857710613287345, c2 = 5200281507982433

4399167664813427, c3 = − 4618293127047827
10490100451822575,

d1 = 108606835852797
172086020422633, d2 = − 58623767696137

811561628596785, d3 = 810034846678267
1836329443349088,

or

c1 = 810034846678267
1836329443349088, c2 = − 58623767696137

811561628596785, c3 = 108606835852797
172086020422633,

d1 = − 4618293127047827
10490100451822575, d2 = 5200281507982433

4399167664813427, d3 = 479561939695517
1857710613287345.

5. Numerical examples

The shooting technique has been used in order to implement the new methods.
Comparison with existing methods for two potentials, the harmonic oscillator and the
hydrogen atom is given.

5.1. The harmonic oscillator

Let the potential of the one-dimensional harmonic oscillator

V (x) = 1

2
x2 (−∞ < x < +∞). (21)
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For this potential the exact eigenvalues are given by the formula

En = n+ 1

2
(n = 0,1,2, . . .). (22)

In order to compute the eigenvalues, we take as boundary conditions

y(xmin) = 0, y(xmax) = 0, (23)

wherexmin andxmax are, respectively, the left and right boundaries. We defineN as a
positive integer and then the space[xmin, xmax] is divided intoN equal intervals. The
length of each interval is equal toh = (xmax− xmin)/N and this denote thatxn = xmin+
nh (n = 1,2, . . . , N−1). Then in order to calculate the eigenvalues, we use a symplectic
scheme and the shooting method.

We have the following computations:
(1) The new two-stage second-order and the new three-stage third-order symplec-

tic integrators have been compared with the two-stage second-order and the four-stage
fourth-order methods obtained by Yoshida [5]. For comparison purposes we also use the
method Runge–Kutta–Nyström 6(4)6FD developed in [7].

In figure 1 we present the error graph for the 20, 30, 40, 50, 60, 70, 80 states of
eigenvalues, and the calculations are obtained in the intervals[−8.5,8.5], [−9.5,9.5],
[−10.5,10.5], [−11.5,11.5], [−12.5,12.5], [−13.5,13.5], [−14.5,14.5], respectively,
for h = 0.02.

Figure 1. Values ofErr = − log10 |Ecalculated− Eanalytical| for the eigenvaluesE20, E30, E40, E50,
E60, E70, E80 of the Harmonic Oscillator. Methods used: (i) –✷–: RKNystrom [7] method of six-order,
(ii) –×–: Yoshida [5] method with symplectic-scheme of two-stage second order, (iii) –©–: new method
with symplectic-scheme of two-stage second order, (iv) –♦–: Yoshida [5] method with symplectic-scheme

of four-stage fourth order, (v) –�–: new method with symplectic-scheme of three-stage third order.
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Figure 2. Values ofErr = − log10 |Ecalculated−Eanalytical| for the eigenvaluesE90,E100, . . . , E240of the
Harmonic Oscillator. Methods used: (i) –♦–: Yoshida [5] symplectic-scheme method of four-stage fourth
order, (ii) –✷–: Ruth [2] method with symplectic-scheme of three-stage third order, (iii) –�–: new method

with symplectic-scheme of three-stage third order.

(2) The new three-stage third-order symplectic integrators have been compared
with the four-stage fourth-order methods obtained by Yoshida [5] and with the three-
stage third-order methods obtained by Ruth [2].

In figure 2 we present the error graph for the 90, 100, 110, 120, 130, 140, 150,
160, 170, 180, 190, 200, 210, 220, 230, 240 states of eigenvalues, and the calculations
are obtained in the intervals[−15.5,15.5], [−16.5,16.5], [−17.5,17.5], [−18.5,18.5],
[−19.5,19.5], [−20.5,20.5], [−21.5,21.5], [−22.5,22.5], [−23.5,23.5], [−24.5,
24.5], [−25.5,25.5], [−26.5,26.5], [−27.5,27.5], [−28.5,28.5], [−29.5,29.5],
[−30.5,30.5], respectively, forh = 0.02.

5.2. The hydrogen atom

For the hydrogen atom the radial wave function is determined by one-dimensional
Shrödinger equation of the form:

ÿ(r)+
(

2E + 2

r
− l(l + 1)

r2

)
y(r) = 0, 0 � r < +∞, (24)

wherel = 0,1,2, . . . .
In this paper we solve the eigenvalue problem forl = 0. The boundary conditions

arey(0) = 0 andy(+∞) = 0, and the exact eigenvalues are calculated by the formula

En = − 1

2n2
(n = 1,2,3, . . .). (25)
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Figure 3. Values ofErr = − log10 |Ecalculated− Eanalytical| for the eigenvaluesE10, E20, . . . , E140 of
the Hydrogen Atom. Methods used: (i) –♦–: Yoshida [5] symplectic-scheme method of four-stage fourth
order, (ii) –✷–: Ruth [2] method with symplectic-scheme of three-stage third order, (iii) –�–: new method

with symplectic-scheme of three-stage third order.

The new three-stage third-order symplectic integrators have been compared with
the four-stage fourth-order methods obtained by Yoshida [5] and with the three-stage
third-order methods obtained by Ruth [2].

In figure 3 we present the error graph for the 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140 states of eigenvalues, and the calculations are obtained in the inter-
vals[0,300], [0,1100], [0,2200], [0,3800], [0,5800], [0,8200], [0,11500], [0,18500],
[0,22000], [0,26000], [0,30500], [0,35500], [0,41500], respectively, forh = 1.

6. Conclusions

In this paper new symplectic integrators for the approximate solution of the radial
Shrödinger equation are proposed. Second- and third-order methods are proposed. From
the numerical results presented above we conclude that the new proposed methods are
more accurate than the existing ones.
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