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In this paper new symplectic-schemes for the numerical solution of the radial Shrédinger
equation are proposed. In particular, symplectic integrators for Hamiltonian systems have been
developed. Based on this approach, second- and third-order methods are proposed. These
methods are more accurate than the existing ones. We compare these methods not only with
the existing symplectic methods, but also with a classical Runge—Kutta—Nystrém method.
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1. Introduction

The one-dimensional time-independent Schrédinger equation has the form

1d?
—de—z + V(x)q = Eq, 1)
whereE is the energy eigenvalu®,(x) is the potential ang is the wavefunction.

Many problems in molecular spectroscopy and quantum chemistry, theoretical
physics, materials science and computational mechanics can be expressed as systems
of equations of the form (1). Consequently there is a real need for reliable and efficient
solution of (1) using numerical methods.

Liu et al. [1] has transformed (1) into Hamiltonian canonical equation using Legen-
dre transformation. The Hamiltonian canonical equations are illustrated below:

. 0H
P=—%=—B(X)q,
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whereB(x) = 2[E — V(x)] and H is the Hamiltonian function

1 1
H(q, p,x) = §p2+ EB(X)qZ- 3)

The symplectic integration of Hamiltonian dynamical systems is a recent research
field. Third-order integrators were constructed by Ruth [2], fourth-order integrators were
obtained by Candy and Rozmus [3] and Forest and Ruth [4]. Yoshida [5] has constructed
symplectic integrators of sixth and eighth order.

In this paper new symplectic integrators of second and third order have been con-
structed. The new methods have been compared with well-known symplectic integrators
(see [2-5]).

2. Symplectic integrators — basic theory

The characterization of a canonical transformation is done by using matrix algebra
or by using differential forms (2-form).

Definition 1 [6]. A mapping is symplectic if
L"JL =1, (4)

whereL is the 2i-dimensional Jacobian matrix of the mapping and

with I, and Q; denoting the unit and zerd-dimensional matrix.

q
p
S dgi Adpr =YL dg; A dp;, rewriting as ¢* A dp* = dg A dp.

Proposition 1 [6]. Atransformation( ) — (Zi) is symplectic (2-form) if and only if

In this paper we will study symplectic integrators as proposed by Forest and
Ruth [4], Yoshida [5]:

Pi = Pi_1—c¢;hB"Y2Q; 4,
i=1... k, (5)
Qi = Qi1+ dihP;,

whereQo = ¢", Py = p", B"™Y2 = B(x, + h/2), ¢; andd; are free parameters akds
the number of stages.
The solution at the point,,; is given by:

Or = q"*, po=p"th (6)
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The parameters; andd; are determined by Yoshida [5]

k

exph(A + B)] = [ [ exp(cinA) exp(din B) + O ("), (7)
i=1

wherek andn are the number of stages and the order of method, respectively.

3. Construction of symplectic integrators

In order to determine the coefficients d;, we expand the left-hand side of (7) in
powers off,

1
S(h) = exp[h(A + B)] = 1+h(A+B)+§h2(A2+AB+BA+BZ)+---.

Expanding the right-hand side of (7)

k

S(hy =] [ exn(cihA) exp(d; . B)
i=1

k k k 2 k i
:1+h<Zc,~A —I—ZdiB) + %h2|:(2ci) A24+23"di Y c;AB
i=1 i=1 i=1 i=1  j=1
k k k 2
+2) d; Y c;BA+ (Zdi) Bi| + -

i=1 =i+l i=1

we want the two expressions to agree ug'to The resulting equations for the coeffi-
cientsc;, d; are:

Order 1.
k
A: D]_y]_ = Zci — 1,
i=1
) ®)
B: D172=Zd,'—1.
i=1
Order 2.

AB: D2,1=Zdizcj—%,
k-1 k 1 (9)
BA: D2,2= di Z Cj—z.
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Order 3.
k i 2
1 1
2n.
A“B: D3,1=§Zd,‘<' Cj) —6,
i=1 j=1
k k 2 1
2
AB D32—22Ci<. dj) -5
i=1 j=i
k k 2
1 1
2. —
BA~“: D3,3—§ A_ldi(‘;:l-cj') —6,
= = (20)
1k i-1 2 1
2 —_— . . —_—
i=2 j=1
k k k 1
ABA: D3,5:ZCiZdj Z Cl_év
i=1 j=1 I=j+1
k i j—1 1
BAB: D3’6:Zdi Cj dl—é.
i=2 j=2 =1
Order 4.
AsBI D4’1, ABsi D4’2, BA3Z D4’3, B3AI D4’4,
Aszi D475, BZAzi D476, AZBAZ D477, ABZAZ D478, (11)

ABAZZ D479, BZABl D4710. BAZBZ D4711, BABZZ D4712,
ABAB: D4713, BABA: D4714,

The functions of order four are presented analytically in section 4.2. The equations
for higher orders can be found in a similar way.

The above equations are depended linearly. The transformation into a linearly
independent system of equations, leads to the following number of equations.

The number of order condition is

Order 1
Equations 2 3 5

N
w

4
8

therefore a second-order method needs at least two stages while a third-order method
needs at least three stages.
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4. Development of the new methods

4.1. The second-order method

We are going to construct the second-order method. From the previous discussions
this is going to be a two-stage method, of the form (5), i.e.,

h
P = p" — C]_]’lB(xn + §>qn’

Q1=q" +dihPy,
h
ptt =P — Czh3<xn + 5) 01,

qn+1 — Ql + dzhp"+1.

Following approach described in section 3, equations (8), (9) are written as

citce=1 (12a)
dy +dp =1, (12b)
1
c1d1 + (c1+ c2)dz = > (12¢)
1
dicz = 3. (12d)

For second-order equations 12(a)—(c) should be satisfied, while 12(d) follows from
the first three equations.
Yoshida [5] derived his second-order method by letiiag= 0, then

1 1
Cc1 = E, Cop = E, dlzl, dzzo. (13)
Since we have three equations, wedgbe a free parameter, then
1 1
=1-—, =—, do=1-—4d. 14
c1 2d1 c2 2d1 2 1 ( )

We minimize the error-function and we find the coefficients. The error-function

error (c1, c2, da, dp) = \/ D3, + D3,+ D5+ D5, + D35+ D, (15)

whereDs;, ..., D3¢ for two-stage method are:

1 1, 2
D31 = ~ + E(Cldl + (c1+ ¢2)°da),
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1 1
D3p=—= + =(c2d5 + (dv + d2)%c1),

6 2

1 1,
D3 3= ~5 + Eczdl,

1 1 ,
D3 4= _é + ECzdl,

1
D3s5= ~5 + c1c2d1,

1
D3e= ~5 + c2dy1d>.

From (14) the error-function becomes:

2
error (dy) = f—?/(#) + (=24 3dy)2. (16)
1

Minimization of the error-function giveg, = v/2/2 (error (d1) = 0.0350), then

V2 V2 V2 V2
C]_:l—?, C2:7, d]_:?, d2:1—7 (17)

It is important to be noticed the symmetries,= d, andc, = d;.

4.2. Thethird-order method

We are going to construct the third-order method. From the previous discussions
this is going to be a three-stage method, of the form (5), i.e.,

h
Pl = Pn - ClhB(-xn + E)qn,
Q1=q" +dihPy,

h
P, =P — Cth<Xn + E) 01,
Q2= Q1+ doh Py,

n+1 h

p"m = Py—c3hB| x, + > 0>,
qn+l — Q2 -|—d3hp"+1.
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Following approach described in section 3, independent equations (8)-(10) are
written as:

c1+c+c3=1, (18a)
di+do+d3s=1, (18b)
1 18

] cadi + (cr+ c2)dz + (c1+ 2 + c3)dz = > (18c)
1

cocada + c1((c2 + c3)dy + cad) = 6 (18d)
1

codids + d3((dy + do)cz + cody) = 3 (18e)

For third-order method equations 18(a)—(e) should be satisfied.

Ruth [2] derived his third-order methodrfor = 0.0495164), which is given
by:

2 2 1 3 7
= l = —— = — = —— = — = —. 1
a=1 o 3 =3 dy o4 d> 2 d3 >4 (19)

Since we have five equations (and six parameters), wélee a free parame-
ter. We minimize the error-function and we find the coefficients. The error-function
becomes:

error (C]_, Cc2, C3, dla d2, dS) = \/Dil + Diz + -+ D4 14> (20)
whereDy 1, Dy, ..., Dy 14 for three-stage method are:
1 1
Dy1= %4 6(C1d1 + (c14 €2)%dz + (c1 + 2 + €3)°ds3),

1 1
Dyr=— 24 6(C3d3 + co(do + d3)3 + c1(d1 + do + d3) )

1
Dy3z=—— + = ((Cz + ¢3)%d1 + 3dy),

24" 6
11 3 3
Dya= Y + 6(C2d1 + c3(d1 + do) )v
1
Das=,(-1+ 12c5c3d2 + 6c3d3 + 6¢5(dz + da)? + 6e1(dy + do + da)?)

1
+ é(clc3d§ + co(d2 + d3)?),

1 1
Dye= ~%2 + 4( cad? + 2coc3d? + c3d? + 2c5dydy + c%dzz),



20 K. Tseliosand T.E. Smos/ Symplectic methods for the numerical solution

1 1 1,
Dy7= ~%a + 5616263612 + E(Czcsdz + c1(cacada + c1((c2 + c3)dr + cada))),
1 1 1 ,
Dyg= ~%a + 56163611612 + E(Czc3d2 + c1(cads + di((c2 + c3)dr + cadr))),
1 1
Dyo= ~%a + E(chédz + c1((c2 + ca)%dy + 5dy)).
1 1
Dy 10= ~%a + E(Czdfdz + (c2di + c3(dy + d2)?)d3).
1 1 1
Dy11= ozt ECzcsdlds + E(ngzds + d1(cdds + c2(cads + c2(d2 + d)))),

1 1
Dy 2= ~%a + E(Csdzdg +d1 (03d§ + co(do + ds)z)),

1
D4 13= Y + cocadods + C1(C3d2d3 +di (C3d3 + Cz(dz + dg))),

1
Dy 14= ~%a + coczdrds.

Minimization of the error function gives

__ 58623767696137 _ 5200281507982433 _
d2 = —giiesies8506785 OF 92 = J3o0i67664813427 (ETON (d2) = 0.0374228,
then
o1 A79561930605517 _ 5200281507982433 _ 4618293127047827
1 = Tg57710613287345 C2 = 2399167664813427 €3 — ~ 10490100451822575
. — 108606835852797  , _ _ 5863767696137 ; _ B10034846678267
1 = 172086020422633 = T 811561628596785 @3 = 1836329443349088
or
¢r — B10034846678267 ¢, — _ 58623767606137 _ 108606835852797
1 = 1836329443349088 2 = T 311561628596785 C3 = 172086020422633
. — _ 4618203127047827  ; _ 5200281507982433 7 _ A79561939695517
1= —710490100451822575 92 = 2399167664813427 93 = 1857710613287345

5.  Numerical examples

The shooting technique has been used in order to implement the new methods.
Comparison with existing methods for two potentials, the harmonic oscillator and the
hydrogen atom is given.

5.1. The harmonic oscillator

Let the potential of the one-dimensional harmonic oscillator

2

Vix) = %x (—o0 < x < +00). (21)
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For this potential the exact eigenvalues are given by the formula
1
En=n+§ n=0,1,2,..)). (22)

In order to compute the eigenvalues, we take as boundary conditions

Y(Xmin) = 0, Y(xmax) =0, (23)

wherexmin andxmay are, respectively, the left and right boundaries. We definas a
positive integer and then the spao&in, xmax is divided intoN equal intervals. The
length of each interval is equal to= (xmax — xmin)/N and this denote that, = xmin +
nh(n=1,2,..., N—1). Theninorder to calculate the eigenvalues, we use a symplectic
scheme and the shooting method.

We have the following computations:

(1) The new two-stage second-order and the new three-stage third-order symplec-
tic integrators have been compared with the two-stage second-order and the four-stage
fourth-order methods obtained by Yoshida [5]. For comparison purposes we also use the
method Runge—Kutta—Nystréom 6(4)6FD developed in [7].

In figure 1 we present the error graph for the 20, 30, 40, 50, 60, 70, 80 states of
eigenvalues, and the calculations are obtained in the intefrv@$, 8.5], [—9.5, 9.5],

[-105, 105], [-115,115], [-125, 125], [-135, 135], [-14.5, 14.5], respectively,
for h = 0.02.
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Figure 1. Values oErr = —10g1g|Ecalculated— Eanalytical for the eigenvaluesog, E3o, E40. Esp,

Ego, E70, Egp of the Harmonic Oscillator. Methods used: (jp— RKNystrom [7] method of six-order,

(ii) —x—: Yoshida [5] method with symplectic-scheme of two-stage second order, i) rew method

with symplectic-scheme of two-stage second order, {@4-=Yoshida [5] method with symplectic-scheme
of four-stage fourth order, (v)A—: new method with symplectic-scheme of three-stage third order.
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Figure 2. Values OErr = —1091g | Ecalculated— Eanalytical for the eigenvalueg€gg, E100, - - -, E2400f the

Harmonic Oscillator. Methods used: (i—: Yoshida [5] symplectic-scheme method of four-stage fourth

order, (ii) -0—: Ruth [2] method with symplectic-scheme of three-stage third order, (i#):-hew method
with symplectic-scheme of three-stage third order.

(2) The new three-stage third-order symplectic integrators have been compared
with the four-stage fourth-order methods obtained by Yoshida [5] and with the three-
stage third-order methods obtained by Ruth [2].

In figure 2 we present the error graph for the 90, 100, 110, 120, 130, 140, 150,
160, 170, 180, 190, 200, 210, 220, 230, 240 states of eigenvalues, and the calculations
are obtained in the intervals-15.5, 15.5], [-16.5, 16.5], [-17.5, 17.5], [-185, 18.5],
[—195,195], [-205,205], [-215,215], [—225,225], [-235,235], [—245,

245], [-255,255], [-26.5,265], [—275,275], [—285,285], [—29.5,295],
[—30.5, 30.5], respectively, forr = 0.02.

5.2. The hydrogen atom
For the hydrogen atom the radial wave function is determined by one-dimensional
Shrédinger equation of the form:

y(r) + (ZE + z_ J; 1)>y(r) =0, 0<r < +oo, (24)
r r

wherel =0,1,2,....
In this paper we solve the eigenvalue problemifer 0. The boundary conditions
arey(0) = 0 andy(4+o00) = 0, and the exact eigenvalues are calculated by the formula

1
E,=—5

53 (1=1.23..). (25)
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Figure 3. Values ofrr = —log1g|Ecalculated— Eanalytical for the eigenvaluegyp, E20, - .., E140 of

the Hydrogen Atom. Methods used: (¥—: Yoshida [5] symplectic-scheme method of four-stage fourth

order, (ii) -0—: Ruth [2] method with symplectic-scheme of three-stage third order, (i#):-hew method
with symplectic-scheme of three-stage third order.

The new three-stage third-order symplectic integrators have been compared with
the four-stage fourth-order methods obtained by Yoshida [5] and with the three-stage
third-order methods obtained by Ruth [2].

In figure 3 we present the error graph for the 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140 states of eigenvalues, and the calculations are obtained in the inter-
vals[0, 300], [0, 1100, [0, 2200, [0, 3800, [0, 5800, [0, 8200, [0, 11500, [0, 18504,

[0, 2200Q, [0, 260040, [0, 305040, [0, 3550Q, [0, 4150Q, respectively, forr = 1.

6. Conclusions

In this paper new symplectic integrators for the approximate solution of the radial
Shrodinger equation are proposed. Second- and third-order methods are proposed. From
the numerical results presented above we conclude that the new proposed methods are
more accurate than the existing ones.
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